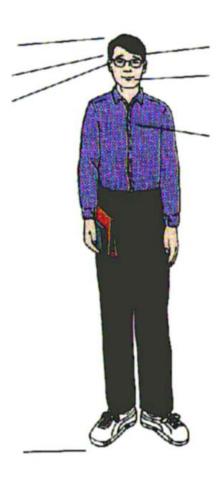


A composição e propriedades são as mesmas ?

Os Três Estados da Matéria

Gelo
Um sólido tem
volume e forma
definida


Água Um líquido tem volume fixo e forma variável

Vapor
Um gás tem
volume e
forma variável

Propriedades Físicas e Químicas

Aparência (físico)

Altura
Cor do cabelo
Cor dos olhos

Personalidade (químico)

É gentil ou intratável ?

É alegre ou mal-humorado?

É agressivo ou tímido?

Estrutura e Propriedades

Estrutura Electrónica dos Átomos

Número Atómico

$$Z = n^0$$
 protões

- √ Nº de ordem do elemento na tabela periódica
- √ Identidade química do átomo

Átomo neutro nº protões = nº electrões

Número Massa

A = nº protões + nº electrões

^A X

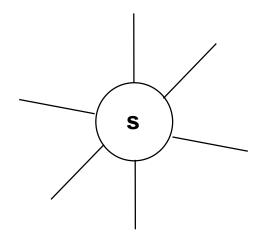
Isótopos têm o mesmo nº atómico mas diferente nº de massa:

 ${}_{1}^{1}H$ ${}_{1}^{2}H$

Números Quânticos

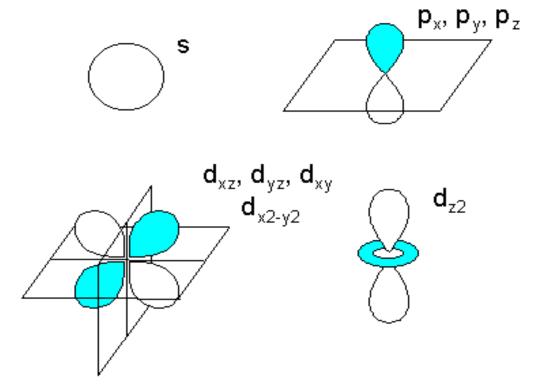
<u>Descrevem</u> as <u>orbitais atómicas</u> e identificam os electrões que ocupam essas orbitais

- ✓ É uma medida do tamanho do orbital
- ✓ Determina a energia do electrão no átomo


Camada	Nº de electrões que a camada pode suportar ¹	Energia relativa nessas camadas
4	32	elevada
3	18	
2	8	
1	2 ¹Cada camada contém 2n	baixa 1 ² electrões

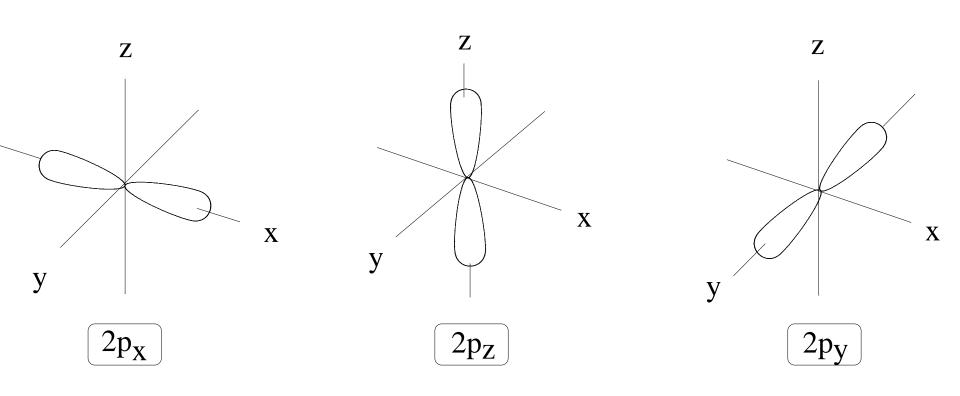
Nº quântico de momento angular

✓ Determina a forma dos orbitais

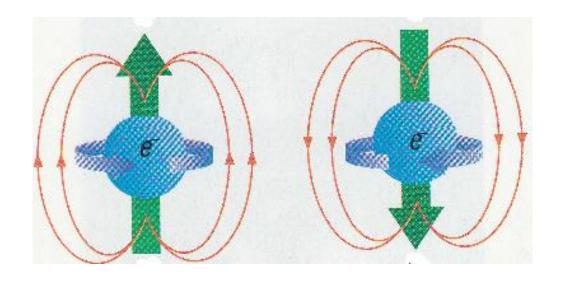

<i>I</i>	0	1	2	3	4
nome do orbital	S	p	d	f	9

Orbitais atómicas s

Orbitais atómicas p

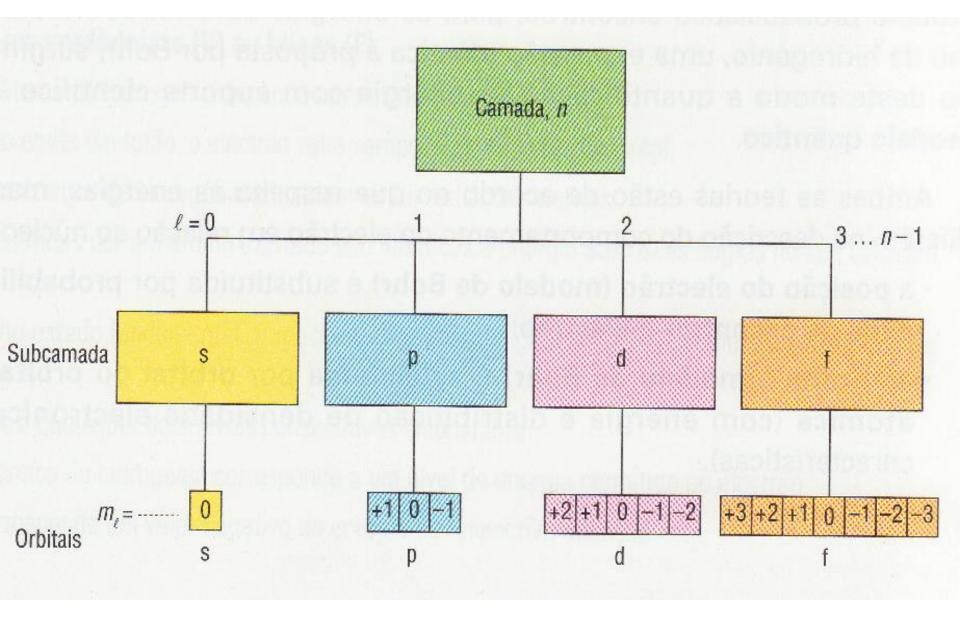

- ✓ Diferem na orientação espacial
- ✓ Aumentam de tamanho com o aumento de n
- ✓ Apresentam um plano nodal que passa pelo núcleo

Nº quântico magnético


$$m_I = +I, (+I-1), ..., 0, ..., (-I+1), -I$$

✓ Determina a orientação do orbital no espaço

$$m_s = +1/2 , -1/2$$


Descreve o movimento dos electrões

relaciona-se com o sentido do movimento de rotação do electrão na orbital

$$m_{\rm s} = +\frac{1}{2}$$

$$m_{\rm s} = -\frac{1}{2}$$

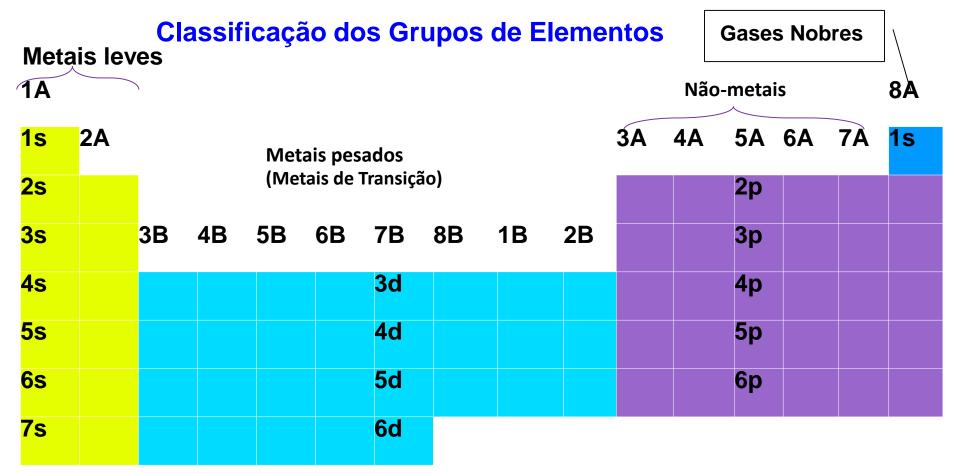
Configuração Electrónica dos Átomos

Regra 1: O Princípio de Aufbau

Os orbitais são preenchidos por ordem crescente de energia

Regra 2: O Princípio de Exclusão de Pauli

Apenas dois electrões podem existir numa orbital, um com spin +1/2 e outro com spin -1/2

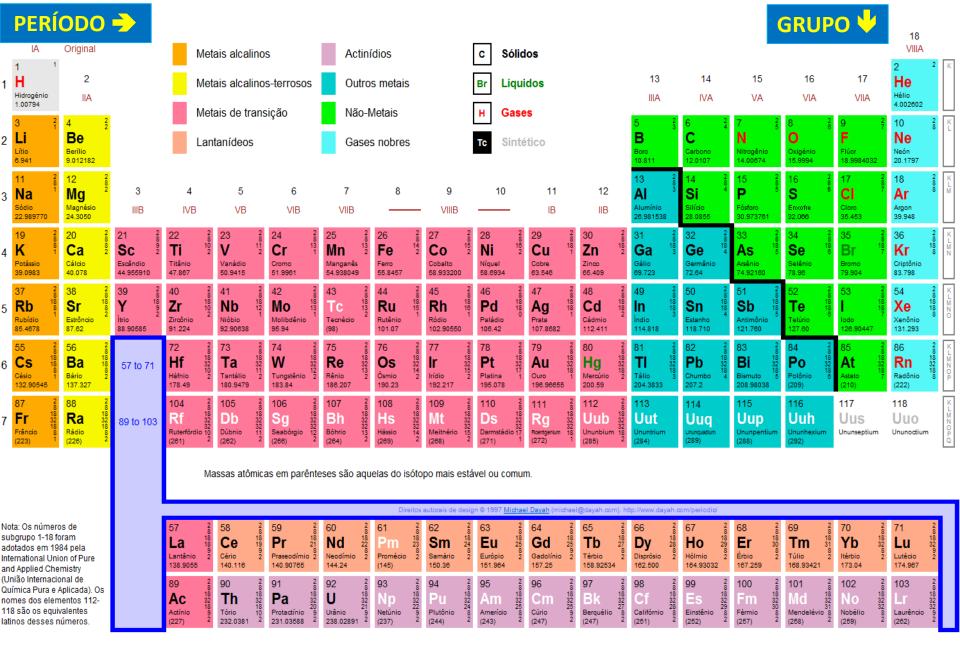

Regra 3: Regra de Hund

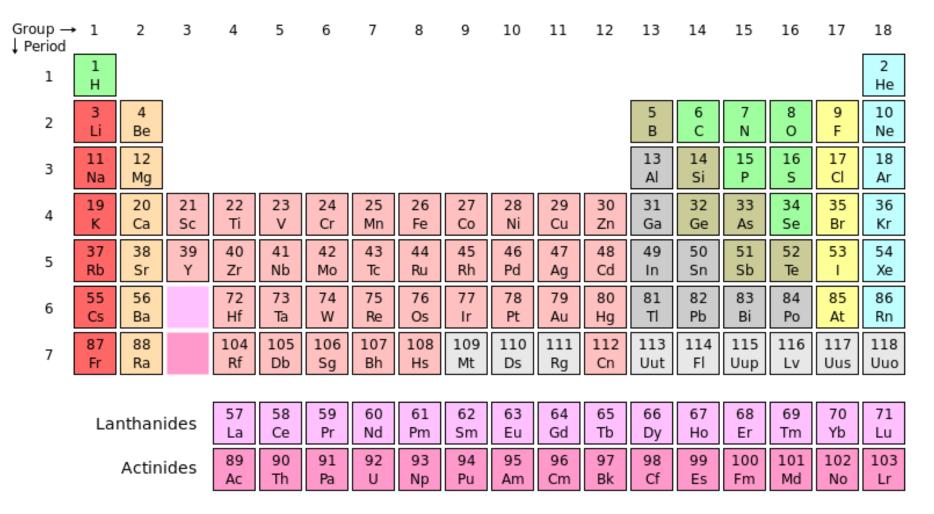
A distribuição mais estável é que a tem maior nº de spins paralelos

Configurações electrónicas para os estados fundamentais dos átomos*

Elemento	Número atómico	Configuração electrónica
Н	1	1 s¹
Не	2	1s ²
Li	3	1s ² 2s ¹
Ве	4	1s ² 2s ²
В	5	1s ² 2s ² 2p ¹
С	6	1s ² 2s ² 2p ²
N	7	1s ² 2s ² 2p ³
0	8	1s ² 2s ² 2p ⁴
F	9	1s ² 2s ² 2p ⁵
Ne	10	1s ² 2s ² 2p ⁶

^{*}Configuração electrónica de menor energia para um átomo, molécula ou ião


Electrões de Valência


Ocupam as camadas mais exteriores (camadas de valência) e são os que estão envolvidos na <u>formação de ligações químicas</u> e nas <u>reacções químicas</u>

Gases Nobres

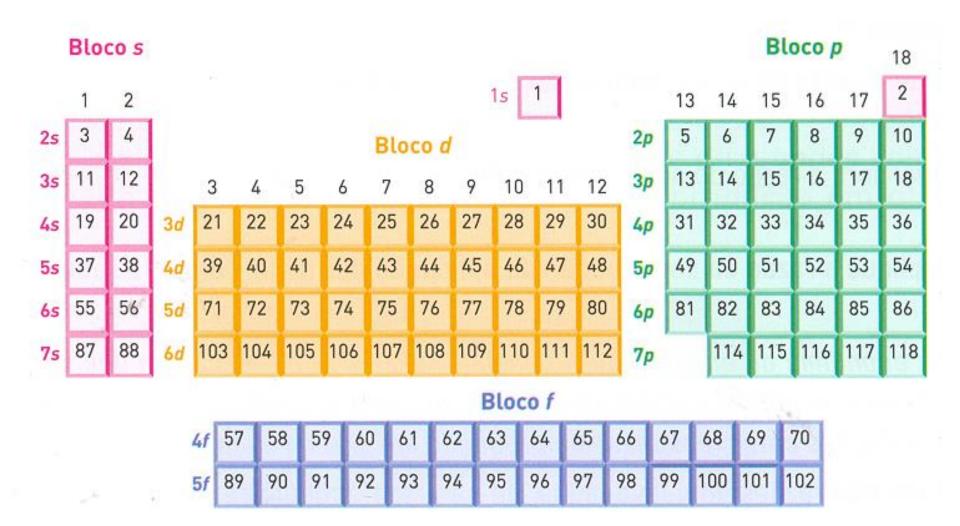
São inertes quimicamente pois possuem as orbitais de valência totalmente preenchidas

Tabela Periódica

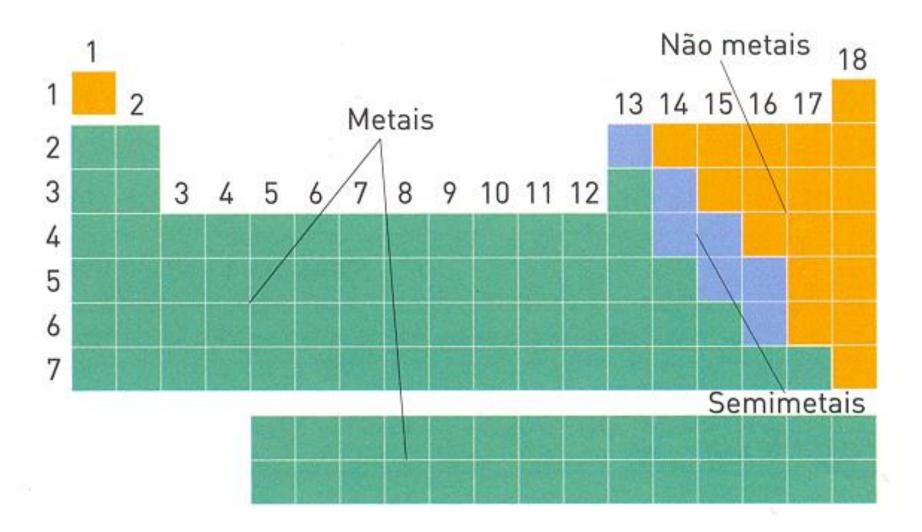
Nº de ordem do elemento na TB = nº atómico (Z)

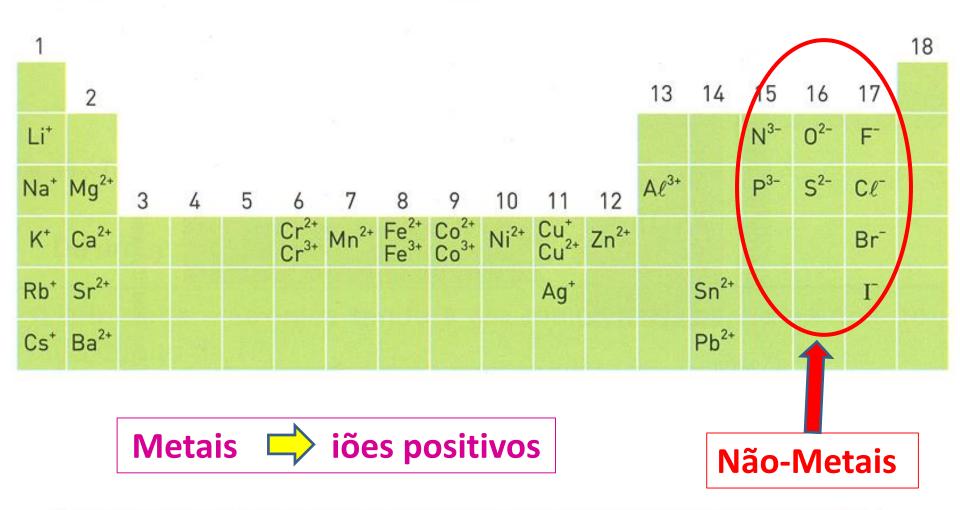
Átomo neutro nº protões = nº electrões

Tabela Periódica


Elementos ordenados por ordem crescente dos seus números atómicos

metais alcalinos – 1ª coluna valores mínimos das energias de ionização


♣ Elementos com a mesma inércia química: gases nobres – última coluna hélio, néon, árgon, crípton, xénon e radão energias de ionização máximas


Agrupamento dos elementos em blocos

Como é fácil observar, a maior parte dos elementos são metais (a verde) e apresentam propriedades químicas e físicas características.

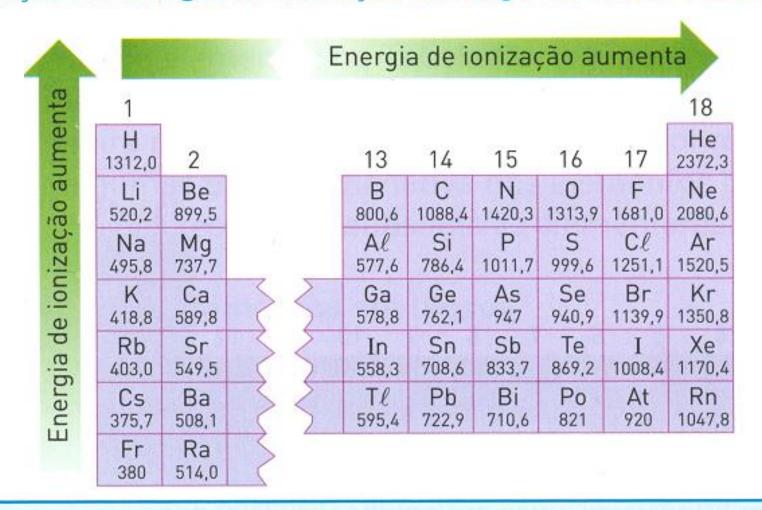
C Tipo de iões mais vulgares

Os "elementos metálicos" formam, predominantemente, iões positivos e os "elementos não metálicos" iões negativos.

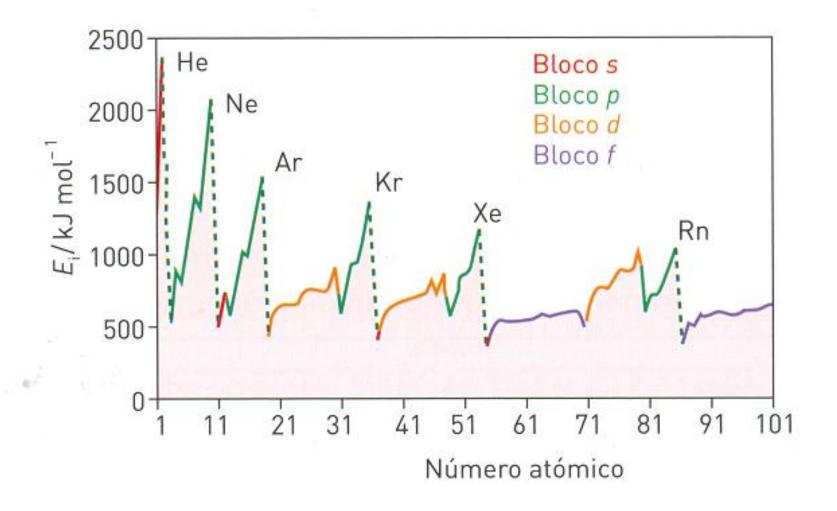
D E porque será que isto acontece?

Energia de ionização (E_i) é a energia mínima necessária para ejetar uma mole de eletrões de uma mole de átomos neutros, no estado gasoso e fundamental, de forma a originar "iões positivos".

1ª energia de ionização


$$M(g) \longrightarrow M^+(g) + e^- \qquad E_{i_1} > 0$$

2ª energia de ionização


$$M^{+}(g) \rightarrow M^{2+}(g) + e^{-} \qquad E_{i_2} > E_{i_1} > 0$$

A ionização de um átomo é sempre um processo endotérmico, pelo que a **energia de ionização** (*E*_i) é sempre positiva.

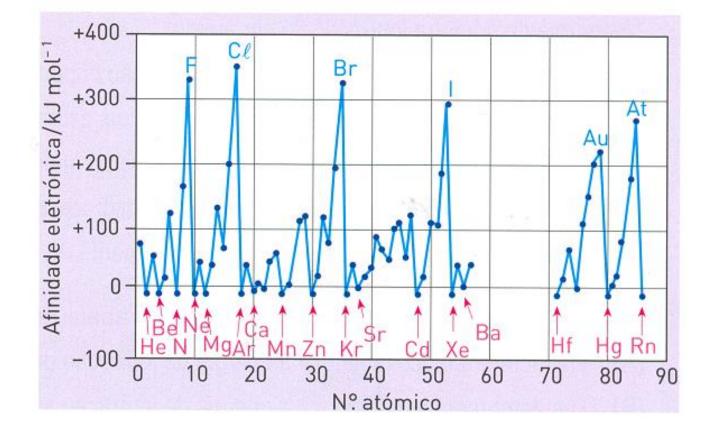
Variação da energia de ionização ao longo da Tabela Periódica

Os metais apresentam valores baixos de energia de ionização e os não metais apresentam valores mais elevados.

A afinidade eletrónica

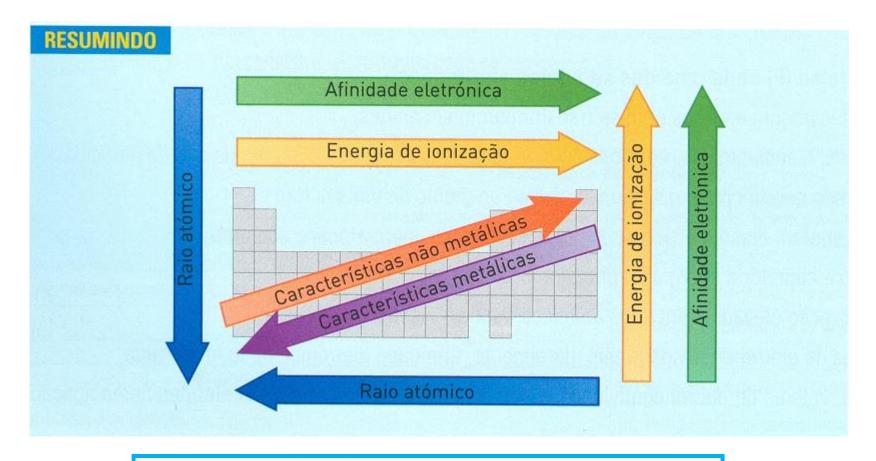
Afinidade eletrónica (E_{ae}) é a energia necessária para retirar um eletrão de um ião mononegativo ($X^-(g) \longrightarrow X(g) + e^-$). A definição equivalente mais comum é a energia libertada ($E_{inicial} - E_{final}$) quando um eletrão se liga a um átomo (ou molécula) na fase gasosa.

$$C\ell(g) + e^- \longrightarrow C\ell^-(g)$$


$$E_{ae}(C\ell) = -\Delta_{ge}H = +349 \text{ kJ mol}^{-1}$$

$$Afinidade \qquad Ganho de$$
Eletrónica Eletrão

	Grup	0	Tal	Tabela de afinidades eletrónicas (Eae								$_{\rm s}/{\rm kJ~mol^{-1}})$						
Período	1 H											18						
1	+73	2											13	14	15	16	17	He -21
2	Li +60	Be ≤0												Ne				
_											+27	+122	-7	+141	+328	-29		
3	Na	Mg											Al	Si	P	S	Cl	Ar
	+53	< 0	3	4	5	6	7	8	9	10	11	12	+43	+134	+72	+200	+349	-35
4	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
7	+48	+2	+18	+8	+51	+64		+16	+64	+112	+118	-47	+29	+116	+78	+195	+325	-39
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
5	+47	+5	+30	+41	+86	+72	+53	+101	+110	+54	+126	-32	+29	+116	+103	+190	+295	-41
6	Cs	Ba	Lu	Hf	Ta	W	Re	0s	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
	+45	+14			+31	+79	+14	+106	+151	+205	+223	-61	+20	+35	+91	+183	+270	-41
7	Fr	Ra	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Uut	Uuq	Uup	Uuh	Uus	Uuo
1	+44										270							


A afinidade eletrónica tende a ser maior para os elementos do lado direito da TP.

Quanto mais elevada for a energia libertada quando um átomo capta um eletrão, mais estável é o anião em relação ao átomo e maior é a sua afinidade eletrónica, E_{ae} .

Os **elementos metálicos** — apresentam baixas afinidades eletrónicas, pelo que não têm tendência a captar eletrões.

Os **elementos não metálicos** — pelo contrário, são mais estáveis na forma de anião.

Assim, uma diferença fundamental entre metais e não metais é:

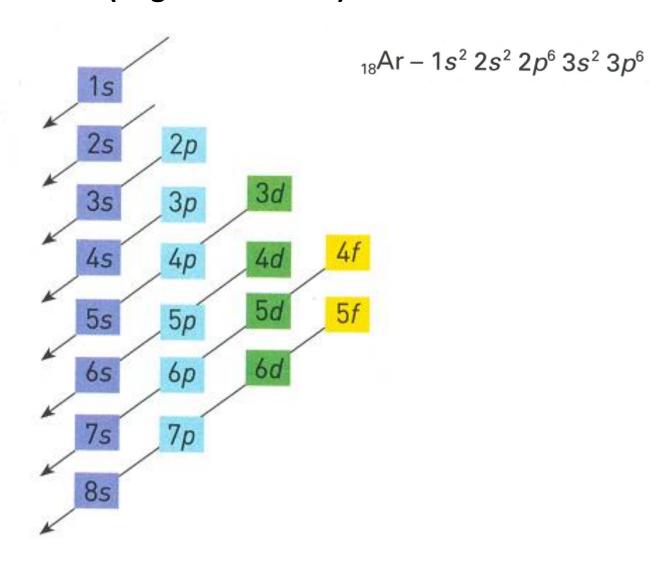
- os metais apresentam baixos valores de energia de ionização;
- os não metais apresentam elevados valores para a afinidade eletrónica.

Os metais de transição: a especificidade das orbitais d

Elementos do bloco d

Elementos do bloco d são os que têm na sua configuração eletrónica orbitais d, que acabaram de receber eletrões

Elemento de transição (também designado por metal de transição) é definido pela IUPAC (Red Book, 43) como "um elemento cujo átomo tem uma orbital d incompleta ou que pode originar catiões com orbitais d incompletas".


A partir desta definição, o zinco ([Ar] $3d^{10}4s^2$), o cádmio ([Kr] $4d^{10}5s^2$) e o mercúrio ([Xe] $4f^{14}5d^{10}6s^2$) são excluídos da definição de metal de transição, uma vez que têm uma configuração eletrónica com d^{10} e apenas utilizam os eletrões das orbitais s para formar os seus iões.

O cobre, Cu, embora tenha uma configuração eletrónica [Ar] $3d^{10}4s^1$, pode dar origem a dois iões:

- ião Cu⁺ com a configuração eletrónica [Ar] 3d ¹⁰;
- ião Cu²⁺ (ião de cobre mais vulgar) com a configuração [Ar] 3d⁹.

Assim, o cobre é efetivamente um elemento de transição porque, pelo menos o ião Cu²⁺, tem uma orbital *d* incompleta.

Regra prática para o preenchimento de orbitais atómicas (Regra de Aufbau)

No potássio (Z = 19) e no cálcio (Z = 20), elementos com números atómicos a seguir ao árgon, não se preenchiam as orbitais 3d, mas sim as 4s:

$$_{19}$$
K $- 1s^2 2s^2 2p^6 3s^2 3p^6 4s^1$

$$_{20}$$
Ca $- 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$

Só depois de a orbital 4s estar completa é que se começava a preencher as 3d.

$$_{18}$$
Ar $-1s^2 2s^2 2p^6 3s^2 3p^6$

Elementos do bloco d do 4º período

 $Sc - [Ar] 3d^{1}4s^{2}$

 $Ti - [Ar] 3d^2 4s^2$

 $V - [Ar] 3d^34s^2$

 $Cr - [Ar] 3d^54s^1$

Mn – [Ar] $3d^54s^2$

Fe – [Ar] $3d^64s^2$

 $Co - [Ar] 3d^7 4s^2$

 $Ni - [Ar] 3d^8 4s^2$

 $Cu - [Ar] 3d^{10}4s^1$

 $Zn - [Ar] 3d^{10}4s^2$

Orbital 4s tem
menor energia que
a orbital 3d
(princípio da
energia mínima)

Exercício 1. Seleccione a opção que corresponde à configuração electrónica de um átomo de ₂₆Fe isolado, no estado fundamental.

- (A) [Ar] $4s^24d^6$
- (B) [Ar] $4s^{1}4d^{5}4p^{2}$
- (C) [Ar] $4s^24p^6$
- (D) [Ar] $4s^23d^6$
- (E) [Ar] $3d^8$

Ar, número atômico = 18

R: (D) É a configuração eletrónica que obedece às regras e confere ao átomo um estado de energia mínima.

Exercício 2. Selecione, das opções A, B, C e D, a que corresponde à configuração eletrónica de valência de um átomo com a <u>energia de 1º ionização mais baixa</u> (*n* é um nível não especificado)

(A)
$$ns^2np^5$$
 (B) $ns^2(n-1)d^{10}np^6$ (C) $ns^2(n-1)d^1$ (D) ns^1

R: (D) As configurações referidas correspondem a átomos de elementos do mesmo período da TP. A <u>energia de ionização aumenta ao longo do período com o aumento do nº atómico.</u> Como a configuração D corresponde a um elemento pertencente ao 1º grupo da TP, então é o que apresenta energia de 1º ionização mais baixa.

Exercício 3. Classifique em verdadeira (V) ou falsa (F) cada uma das seguintes afirmações.

- (A) Quanto mais intensa é a atração do núcleo sobre os eletrões periféricos de um átomo, maior é o átomo.
- (B) A energia de ionização diminui com o aumento do nº atómico.
- (C) Uma energia de ionização baixa indica que o átomo apresenta elevada estabilidade.
- (D) As características metálicas de um elemento aumentam, ao longo de um grupo, com o aumento do nº atómico.

(A) Quanto mais intensa é a atração do núcleo sobre os eletrões periféricos de um átomo, maior é o átomo.

R: Falsa. Quanto maior é a atração nuclear menor é o raio atómico.

(B) A energia de ionização diminui com o aumento do nº atómico.

R: Falsa. Ao longo do grupo, a energia de ionização diminui, porque, embora aumente a carga nuclear, o raio atómico também aumenta (maior n); ao longo do período aumenta a carga nuclear e, portanto, aumenta a atração dos eletrões de valência ao núcleo, prevalecendo a atração sobre a repulsão dos eletrões; energia de ionização aumenta ao longo do período.

(C) Uma energia de ionização baixa indica que o átomo apresenta elevada estabilidade.

R: Falsa. A energia de ionização é a menor energia necessária para extrair um eletrão a um átomo no estado gasoso e fundamental, transformando-o num ião monopositivo.

Quanto mais baixa for esta energia, mais facilmente ocorre a ionização e menos estável é o átomo.

(D) As características metálicas de um elemento aumentam, ao longo de um grupo, com o aumento do nº atómico.

R: Verdadeiro. Os metais formam facilmente catiões, ou seja, têm baixas energias de ionização.

Ao longo do grupo, a energia de ionização diminui co m o aumento do nº quântico principal.

Exercício 4. Ordene os átomos F, Na, Rb, C, Be e Si por raio atómico crescente. Justifique.

F = grupo VIIa, período 2

Na = grupo la, período 3

Rb = grupo la, período 5

C = grupo IVa, perído 2

Be = grupo IIa, período 2

Si = grupo IV, período 3

R: F < C < Be < Si < Na < Rb

Ao longo do grupo da TP, o <u>raio atómico aumenta</u> com o aumento do nº atómico, porque aumenta o nº de níveis e a distância ao núcleo e diminui a atração nuclear.

Ao longo do <u>período</u> da TP <u>mantém-se o nº quântico</u> <u>principal</u>, mas <u>aumenta a carga nuclear</u>, aumentando a atração e diminuindo, de uma forma geral, o raio atómico.

F = grupo VIIa, período 2

C = grupo IVa, perído 2

Be = grupo IIa, período 2

Ao longo do <u>período</u> da TP <u>mantém-se o nº quântico</u> <u>principal</u>, mas <u>aumenta a carga nuclear</u>, aumentando a atração e diminuindo, de uma forma geral, o raio atómico.

F < C < Be

F = grupo VIIa, período 2

C = grupo IVa, perído 2

Be = grupo IIa, período 2

F < C < Be

Be = grupo IIa, período 2

Si = grupo IV, período 3

Na = grupo la, período 3

Rb = grupo la, período 5

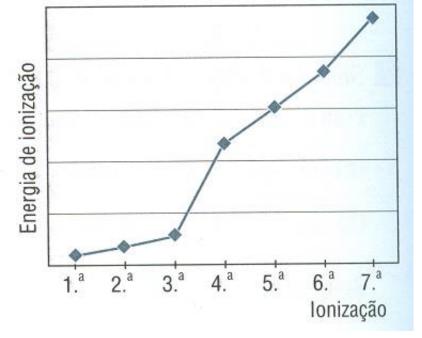
Nº níveis eletrónicos: período 2 < período 3 > período 5

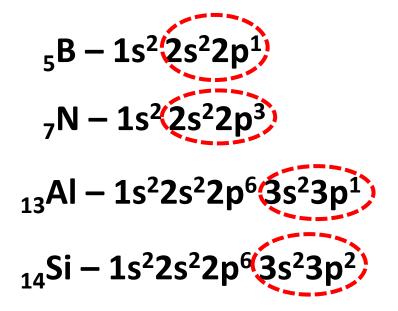
Ao longo do grupo da TP, o <u>raio atómico aumenta</u> com o aumento do nº atómico, porque aumenta o nº de níveis e a distância ao núcleo e diminui a atração nuclear.

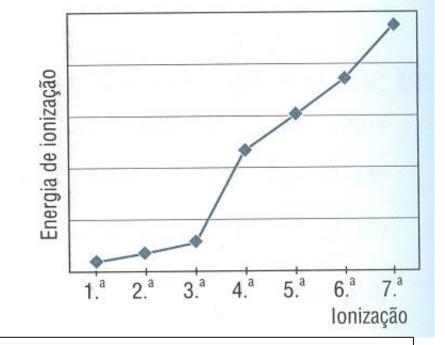
F < C < Be < Si < Na < Rb

Exercício 5. O gráfico apresenta os valores das 7 primeiras energias de ionização de um determinado elemento.

5.1. O elemento pode ser:


(A) boro


(B) azoto


(C) alumínio

(D) silício

5.2. Justifique a escolha feita.

As 3 primeiras energias de ionização apresentam valores próximos mesmo nº quântico principal

Variação mais acentuada para o valor da 4º energia de ionização. O 4º eletrão a ser removido pertence a um nível mais interno, mais atraído pelo núcleo para maior energia de ionização

Total de 7 energias de ionização 📥 mínimo 7 eletrões