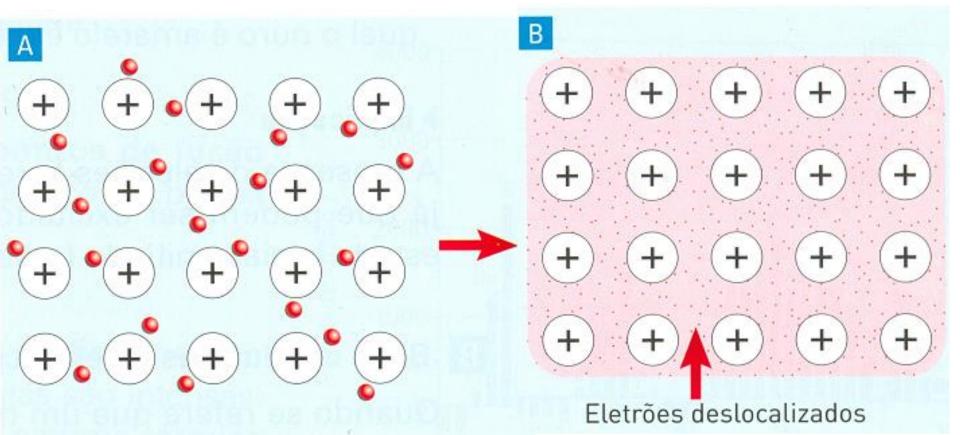
Metais e Ligas Metálicas

Estrutura e Propriedades dos Metais

A ligação metálica

Os metais apresentam propriedades físicas macroscópicas, como densidade elevada, boa condução de corrente elétrica e de calor e pontos de fusão e de ebulição elevados, que sugerem claramente um modelo especial para a ligação que une os seus átomos.

Esfera de Prata


Barras de Ouro

Dulcineia F Wessel CTeSP_VE: Química 2

Modelo de Ligação Metálica

- A sobreposição das nuvens eletrónicas na rede metálica, que permite que os eletrões de um átomo se movam nas nuvens eletrónicas dos átomos adjacentes.
- A transformação de cada átomo do metal num ião positivo (cerne do átomo), rodeado por um certo número de outros iões idênticos numa rede a três dimensões, onde os eletrões mais periféricos se movem livremente de uma camada para outra.
- Uma força ligante que une os átomos entre si na rede metálica, resultado da interação entre os eletrões periféricos deslocalizados que se movimentam entre "iões".
- A não alteração da eletroneutralidade do metal.

- A o círculo branco + representa o cerne do átomo e o pequeno círculo vermelho representa o eletrão de valência.
- pretende representar a deslocalização uniforme dos eletrões à volta de todos os cernes dos átomos na rede metálica.

Generalizando para todos os metais

- os eletrões de valência encontram-se deslocalizados por todo o metal, não pertencendo, portanto, a nenhum átomo em particular (assim sendo, na estrutura sólida dos metais, em posições mais rígidas, encontrar-se-ão partículas constituídas pelo que resta da "libertação" dos eletrões de valência, consequentemente partículas com carga elétrica positiva);
- a ligação química nos metais, muito particular, fica então assegurada pelas forças atrativas entre estas partículas e a totalidade dos eletrões deslocalizados por todo o volume do metal.

Propriedades características dos metais como substâncias ou materiais

O brilho e a cor

- se o metal refletir todas as "cores" do espetro eletromagnético a sua coloração será prateada;
- se o metal não refletir todas as cores do espetro eletromagnético, refletirá a cor complementar das radiações absorvidas, razão pela qual o ouro é amarelo e o cobre é avermelhado.

A presença de eletrões livres permite aos metais a reflexão da luz, já que podem ser excitados por absorção de fotões e voltar ao estado inicial emitindo fotões.

Metal é um bom condutor de corrente elétrica!

Metal é um bom condutor de calor!

Boa condutividade elétrica porque os eletrões deslocalizados têm uma grande mobilidade dentro da rede, comunicando o impulso elétrico com rapidez.

Boa condutividade térmica porque os eletrões deslocalizados transmitem a energia de vibração de um ião positivo aos iões vizinhos.

Densidade

A densidade dos metais não é toda da mesma ordem de grandeza, razão pela qual o ferro, o zinco, o ouro, o cobre e o chumbo podem, por exemplo, ser classificados como metais densos, enquanto o magnésio, o alumínio e o titânio são considerados metais pouco densos (ρ inferior a 5 g cm⁻³).

Nos metais de transição, à medida que o número atómico aumenta, a massa do átomo aumenta sem que o raio (e, portanto, o volume) varie significativamente, o que implica um aumento de densidade.

	Metal			ρ/g cm ⁻³ (a 300 K)										
	Magnésio			1,74										
	Alumínio			2,70										
	Titânio			4,54										
	Zinco			7,13										
4	Ferro			7,86										
	Cobre			8,96										
	Chumbo			11,36			12	13	14	15	16	17	18	
	Ouro		19,31				15					2		
														He
					5 B	6 C	7 N	8	9 F	10 Ne				
									13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	ı	Xe
72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
.04 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
	CTeSP_VE: Química													
				,		c. Quil	IIILd							_

9

Dulcineia F Wessel CTeSP_VE: Química 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

iroup → 1

Period

1

2

3

5

6

7

2 3

Be

12

Mg

20

Ca

38

Sr

56

Ba

88

Ra

21 Sc

39

11

Na

19

37

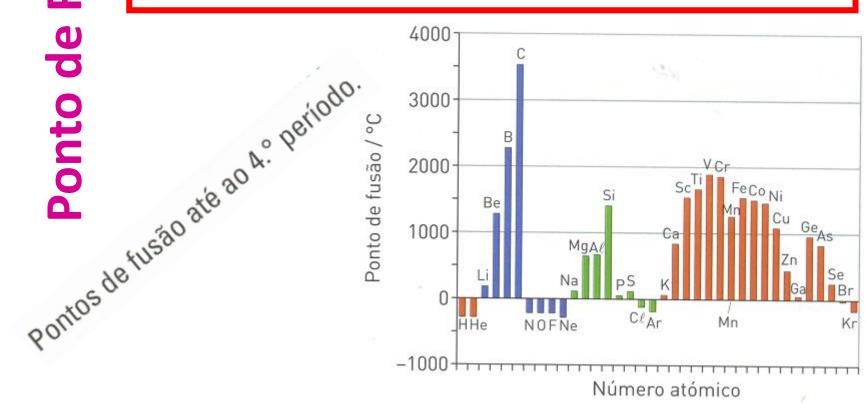
Rb

55

Cs

87

Dureza


A dureza de um metal é definida, nos manuais de referência, como a "resistência do metal a uma deformação plástica", mas também pode estar relacionada com a resistência ao risco e à abrasão.

É esta propriedade do metal que lhe dá a capacidade de resistir, de forma permanente, à deformação (encurvar, partir ou mudar de forma), quando sujeito a uma carga (força).

Assim, quanto maior for a dureza do metal, maior será a sua resistência à deformação e esta propriedade pode ser avaliada através de muitas escalas como as de Rockwell, de Brinell e de Mohs, entre outras.

São geralmente duros devido à elevada intensidade da ligação metálica e porque as partículas presentes nos metais estão fortemente "empacotadas" na rede cristalina.


Têm elevados pontos de fusão e de ebulição porque as forças de atração entre as partículas são intensas. É necessário um valor elevado de energia térmica para superar as forças de atração entre os cernes (iões positivos) e os eletrões deslocalizados. Estas forças fazem-se sentir em toda a rede cristalina.

Ductibilidade

A ductilidade de um metal é a propriedade que permite que ele seja sujeito a estiramento para se obter fios finíssimos.

A ductilidade do ouro (estiramento/distensão), por exemplo, é tal que, com 30 g desse metal, podem obter-se 85,198 m de arame ou fio!!!

Filigrama portuguesa aproveitando a ductibilidade do ouro ou prata

Maleabilidade

A maleabilidade, por outro lado, permite moldar e deformar e também é uma propriedade importante. O ouro é tão maleável que se consegue obter dele folhas finíssimas (filmes).

Esses filmes são usados nos visores dos capacetes de astronautas, nos vidros das cabinas dos aviões e nos veículos espaciais como proteção contra radiações infravermelhas.

São **maleáveis e dúcteis** porque a distorção não rompe a ligação metálica já que, dada a sua natureza não direcional, o deslocamento de átomos não altera as forças de ligação significativamente.

Propriedades dos metais	Explicação Explicação				
Brilho	A presença de eletrões livres permite aos metais a reflexão da luz, já que podem ser excitados por absorção de fotões e voltar ao estado inicial emitindo fotões com as mesmas características.				
Boa condutividade térmica	Os eletrões deslocalizados transmitem a energia de vibração de um ião positivo aos iões vizinhos.				
Boa condutividade elétrica	Os eletrões deslocalizados têm uma grande mobilidade dentro da rede, comunicando o impulso elétrico com rapidez.				
Densidade	São densos, na generalidade, dado que com o aumento de Z, a massa aumenta sem que o raio (ou volume) varie significativamente.				
Dureza	O empacotamento compacto dos metais e a sua forte ligação química dificultam a sua deformação por ação de forças exteriores.				
Elevados pontos de fusão e de ebulição (para uma grande maioria)	As forças de atração entre as partículas são intensas e é necessário um valor elevado de energia térmica para superar as forças de atra- ção entre os cernes (iões positivos) e os eletrões deslocalizados. Estas forças fazem-se sentir em toda a rede cristalina.				
Maleabilidade e ductilidade	A distorção não rompe a ligação metálica; dada a sua natureza não direcional, o deslocamento de átomos não altera significativamente as forças de ligação.				

Sólidos metálicos versus outros tipos de sólidos (iónicos, covalentes e moleculares)

Redes cristalinas

As partículas nos cristais distribuem-se em padrões que se repetem em todas as direções do espaço. O resultado destes padrões é o que se chama **rede cristalina**.

Para descrever a estrutura de um cristal é conveniente perceber o cristal como uma estrutura constituída por um elevado número de unidades simples, as **células unitárias**, que se repetem em todas as direções, construindo a **rede cristalina**.

O elevado grau de regularidade das redes cristalinas é o fator principal que distingue os sólidos dos líquidos.

Sólidos cristalinos

4 Cristais metálicos

Cristais covalentes

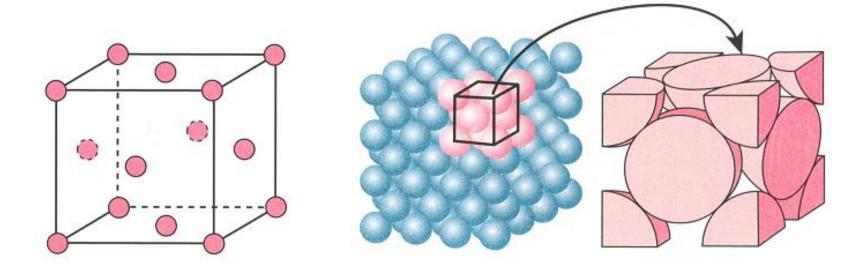
Cristais moleculares

Cristais iónicos

Substâncias cristalinas

Uma substância pode ser considerada cristalina quando os átomos, moléculas ou iões que a constituem estão dispostos segundo uma rede tridimensional bem definida e que é repetida milhões de vezes.

São exemplos todos os metais e a maior parte das cerâmicas.


Substâncias amorfas ou não cristalinas

Uma substância pode ser considerada amorfa ou não cristalina quando, em geral, não apresenta regularidade na distribuição dos átomos e pode ser considerada como líquido extremamente viscoso.

São exemplos o vidro e vários polímeros.

Cristais metálicos

Unidade estrutural.

Cubo de Faces Centradas

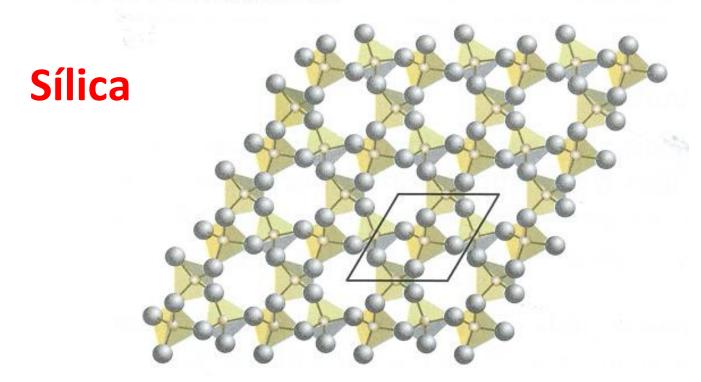
Cristais covalentes

Nestes cristais, as unidades constituintes são átomos que se ligam uns aos outros, compartilhando pares de eletrões, por meio de ligações covalentes.

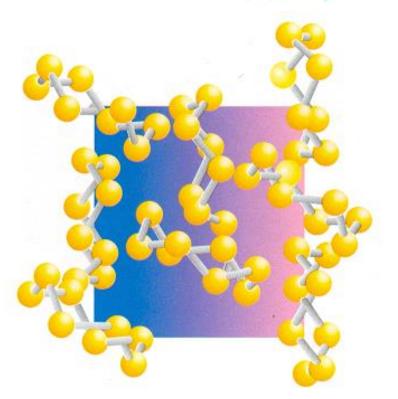
Os cristais covalentes formam uma "molécula" única, gigante.

O exemplo mais conhecido de um sólido deste tipo é o diamante, constituído por átomos de carbono ligados entre si por ligações covalentes.

Cada um dos átomos de carbono está ligado a outros quatro átomos, situados no vértice de um tetraedro, em que o primeiro ocupa o centro.


Rede cristalina rígida, tridimensional

Diamante



Um outro sólido covalente muito comum é a sílica, SiO₂, constituinte do quartzo e do vidro.

Cada átomo de silício, no centro de um tetraedro, liga-se por covalência a quatro átomos de oxigénio, situados no vértice desse tetraedro, e cada átomo de oxigénio liga-se por covalência a dois átomos de silício de dois tetraedros adjacentes

Cristais moleculares

Enxofre S₈

A coesão resultante das interações é de natureza elétrica

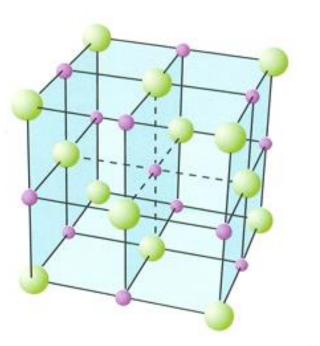
Nos sólidos moleculares cristalinos, as moléculas existem como unidades individualizadas, o que não acontecia com os outros tipos de sólidos analisados anteriormente, já que se comportavam como uma "molécula" única, gigante.

Cristais iónicos

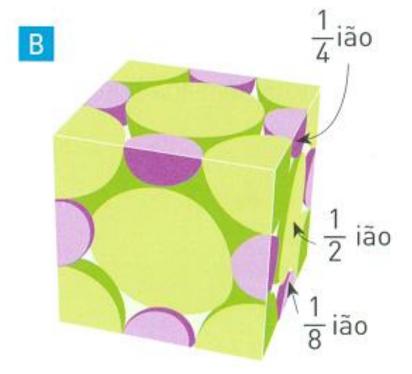
1913

A estrutura cristalina do NaCl foi determinada por difração de raios X

No cristal não existiam moléculas individualizadas de NaCl


O cristal apresentava uma distribuição de iões numa rede cúbica em que cada ião Cl⁻ está rodeado por seis iões Na⁺ e cada ião Na⁺ está rodeado por seis iões Cl⁻ não existiam moléculas individualizadas de NaCl

Distribuição de iões na rede cúbica



Célula unitária

Justifique a seguinte afirmação:

"Um cristal de cloreto de sódio pode ser considerado uma "molécula" gigante."

Um cristal de NaCl é um agregado de aniões e catiões ligados uns aos outros por forças de atração e/ou repulsão, na proporção de 1:1 estas forças mantêm os iões fortemente ligados pelo que se poderá chamar molécula gigante.

Uma substância funde a –5 °C.

Selecione, de entre as três hipóteses seguintes, a estrutura daquela substância na fase gasosa, detalhando os motivos da escolha.

- (A) Estrutura gigante de iões.
- (B) Estrutura gigante de átomos ligados por covalência.
- (C) Sólido molecular.

Um ponto de fusão baixo indica que a mudança de estado exige uma energia de baixo valor pelo que não é suficiente para provocar rutura de ligações químicas; apenas para provocar rutura de ligação entre moléculas, bastante mais fracas.

3 Considere o quadro seguinte:

Substância	Ponto de fusão / °C	Ponto de ebulição / °C	Solubilidade em água	Condução da corrente elétrica na solução aquosa	Condução da corrente elétrica no sólido
Α	800	1470	solúvel	condutor	não condutor
В	500	950	insolúvel	#	não condutor
С	100	890	reage e liberta H,	candutor	condutor
D	- 23	77	insolúvel	=	não condutor

- 3.1. Indique uma substância que possa:
 - 3.1.1. ter uma estrutura gigante de i\u00f0es;

 A.
 - 3.1.2. ser um metal; C.
 - 3.1.3. apresentar, na fase sólida, uma estrutura molecular; D.
 - 3.1.4. ser um cristal covalente.

Quadro apresenta propriedades gerais de alguns tipos de cristais.

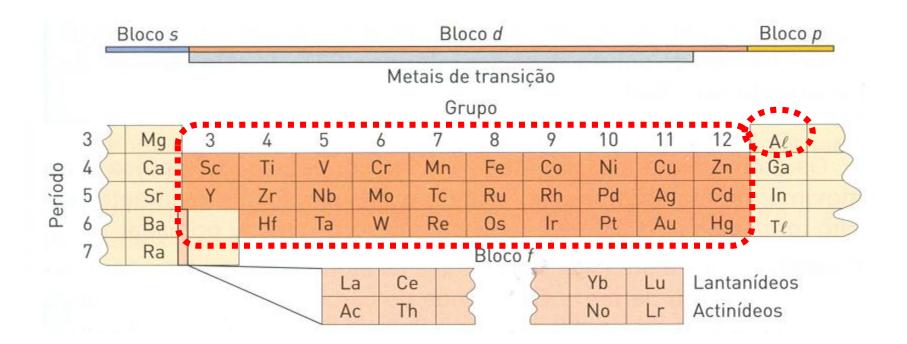
Associe a cada uma das frases A, B, C, D e E o tipo de estrutura cristalina 1, 2, 3 ou 4.

	Propriedades gerais	Tipo de estrutura cristalina
(A)	Apresenta geralmente ponto de fusão elevado; conduz o calor e a corrente elétrica; é deformável, mas não quebra. Tem brilho.	
(B)	O sólido é duro, frágil e não conduz a corrente elétrica. Em fusão ou em solução con- duz a corrente elétrica.	
(C)	O sólido e a sua forma líquida conduzem a corrente elétrica e tem brilho. Embora raros, alguns são líquidos à temperatura ambiente.	4. Covalente
(D)	O sólido e a sua forma líquida não conduzem a corrente elétrica. Insolúvel em água. É duro e brilhante; funde a temperatura muito elevada.	
(E)	Pontos de fusão e de ebulição relativamente baixos, podendo as unidades estruturais existirem livres no estado gasoso.	

Indique um metal que é líquido à temperatura ambiente ?

Ligas metálicas

Uma liga metálica é uma mistura sólida, frequentemente homogénea, que se obtém por arrefecimento de um metal fundido com um ou mais elementos, metálicos ou não metálicos.


A liga tem uma aparência exterior homogénea e os seus componentes não podem ser separados por processos físicos.

Grande aplicação na sociedade tecnológica atual

Possibilidade de controlar a sua composição e consequentemente desenhar as suas propriedades.

Constituintes principais das ligas metálicas

As **ligas metálicas** mais vulgares **incluem os metais situados no bloco d** da Tabela Periódica e o **alumínio**.

Ligas formadas por

somente por metais

• metais e semimetais — Boro Silício Arsénio Antimónio

• metais e não metais Carbono Fósforo

Estas ligas possuem **algumas características que os metais** "puros" não apresentam e por isso são produzidas e muito utilizadas, como, por exemplo:

Propriedade	Diminuição do ponto de fusão	Aumento da dureza	Aumento da resistência mecânica			
Exemplo	Liga de metal fusível	Liga de ouro em joalharia	Aço			
Constituição	Bi, Pb, Sn e Cd	Au, Ag e Cu	Fe e C			
Utilização	Fusíveis elétricos	Manufatura de joias e peças de ornamento	Fabrico de peças para estruturas metálicas			

Qual será a razão do aparecimento de diferentes propriedades nas ligas metálicas?

A diferença de propriedades não está só relacionada com os constituintes da liga mas também com a disposição espacial dos seus componentes.

Tipos de Ligas

Liga substitucional

Os átomos de um metal são substituídos por átomos de outro metal (só é possível quando o raio atómico não difere mais do que 15%)

Liga intersticial

Os átomos do soluto são tão pequenos que se podem ajustar nos interstícios do retículo.

O raio atómico do soluto deve ser inferior a 60% do raio atómico do elemento principal