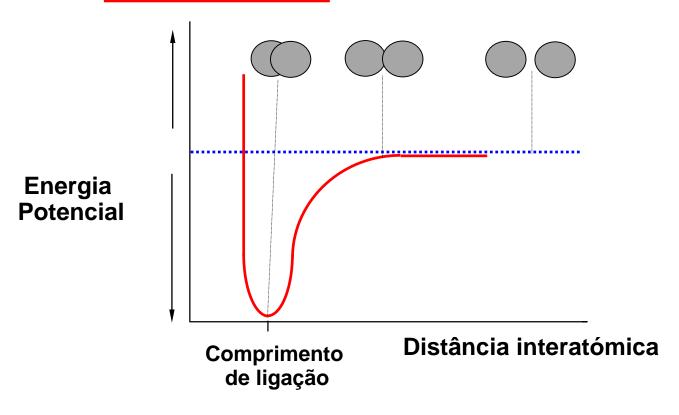
Estrutura de Compostos

Ligação Química

A inércia química dos gases raros indica um <u>elevado grau de</u> <u>estabilidade</u> da configuração electrónica desses elementos: hélio com dois electrões de valência, néon e árgon com oito electrões de valência.

Os átomos têm tendência a reagir de modo a adquirir um <u>octeto</u> de <u>electrões</u> na camada de valência.

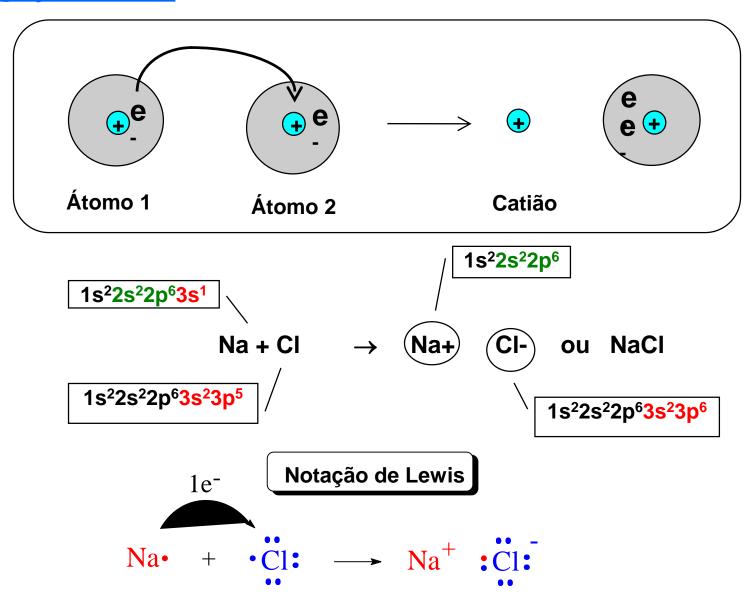
Como adquirir o octeto de electrões ?>


☐ Um átomo pode ganhar ou perder electrões. Se ganha transforma-se num anião (ião de carga negativa). Se perde transforma-se num catião (ião de carga positiva). A atracção electrostática entre iões de carga oposta (Forças de Coulomb) denomina-se

ligação iónica

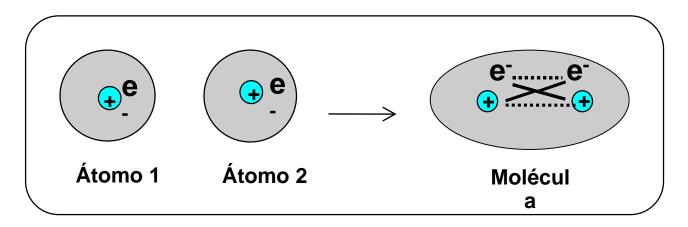
Um átomo pode partilhar os seus electrões com um ou mais átomos para completar a última camada. Uma ligação química que se forme por partilha de electrões é designada por

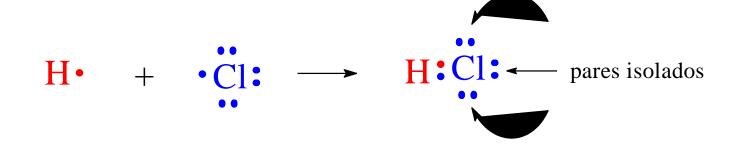
ligação covalente


Quando a energia potencial é mínima, a molécula de H² encontra-se no seu estado mais estável.

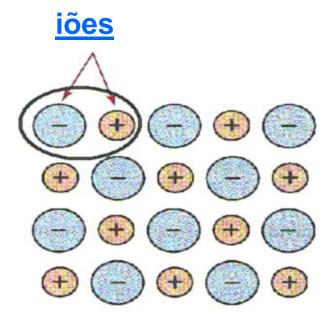
Lei de Coulomb

força atractiva = constante
$$\times \frac{\text{carga}(+) \times \text{carga}(-)}{\text{distancia}^2}$$

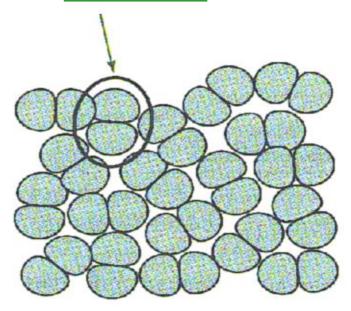

Ligação iónica > Transferência de electrões



Dulcineia F. Wessel


CTeSP_VE: Química

<u>Ligação covalente</u> ➤ Partilha de electrões



Unidade estrutural:

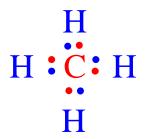
Unidade estrutural:

moléculas

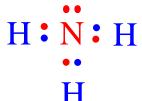
Composto Iónico

Composto Molecular

Comparação de algumas propriedades gerais de um **composto iónico** e de um **composto covalente**.


Propriedade	NaCl	CCl ₄
Aspecto geral	Sólido branco	Líquido incolor
Temperatura de fusão (°C)	801	-23
Entalpia de fusão molar* (kJ/mol)	30,2	2,5
Temperatura de ebulição (°C)	1413	76,5
Entalpia de vaporização molar*(kJ/mol)	600	30
Massa específica (g/cm ³)	2,7	1,59
Solubilidade em água	Elevada	Bastante
		baixa
Condutividade eléctrica		
Sólido	Mau	Mau
Líquido	Bom	Mau

Estruturas de Lewis


Dois átomos unidos por um par de electrões

Ligação simples

Metano

Amoníaco

Água

$$H = C = H$$

$$H = C = C - H$$

Dois átomos partilham dois ou mais pares de electrões

Ligação múltipla

Regras de Escrita de Estruturas de Lewis

Determinar o nº de electrões de valência de todos os átomos na molécula ou ião 111

S
$$\downarrow$$
 \downarrow \downarrow \downarrow $6 e^{-} + (2 \times 6 e^{-}) = 18 e^{-}$

<u>Desenhar</u> uma <u>ligação covalente simples</u> entre o átomo central^[2] e cada um dos átomos ao seu redor.

$$O - S - O$$

Dulcineia F. Wessel

¹ Para um ião poliatómico, adicionar o nº de cargas negativas a este total. Para catiões poliatómicos, subtrair o nº de cargas positivas desse total.

² Em geral, o átomo menos electronegativo ocupa a posição central. O hidrogénio e o flúor ocupam normalmente as posições terminais na estrutura de Lewis.

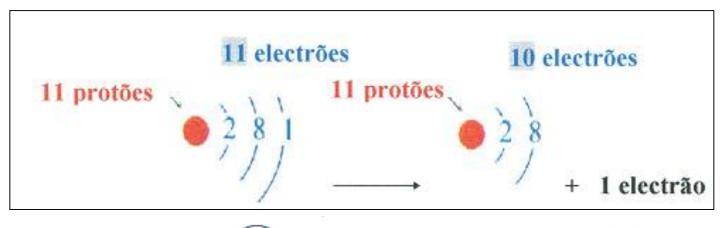
Completar o octeto dos átomos periféricos ligados ao átomo central.

Os restantes electrões de valência devem ser colocados no átomo central.

$$: O - S - O :$$
 18 e-

Se a <u>regra do octeto não for verificada para o átomo central</u>, experimenta--se estabelecer ligações duplas ou triplas entre o átomo central e os átomos em seu redor utilizando os pares isolados destes últimos átomos.

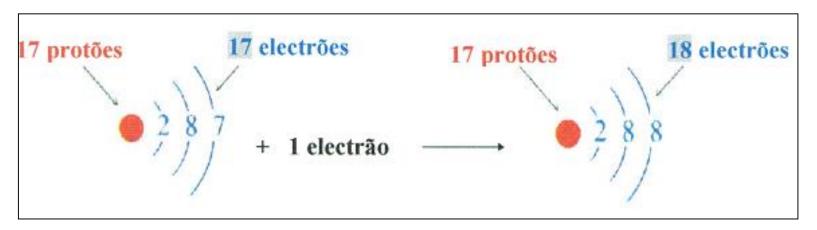
$$: O - S = O$$
:


Compostos iónicos

Metais, no lado esquerdo da tabela periódica, tendem a formar compostos com não-metais, no lado direito da tabela periódica.

KI Iodeto de potássio

NaF Fluoreto de sódio


Nal Iodeto de sódio

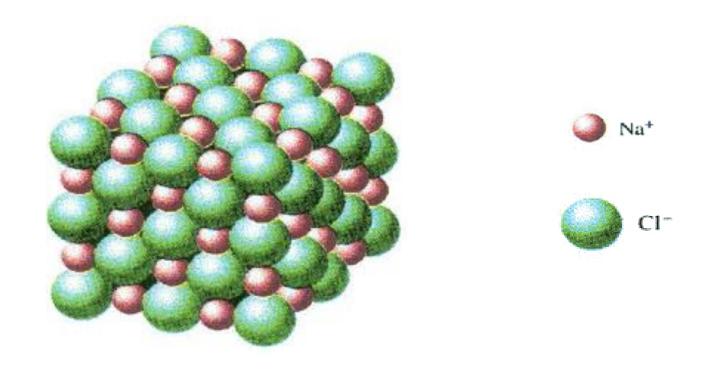
Um <u>átomo</u>:

Um catião:

Um átomo:

Um anião:

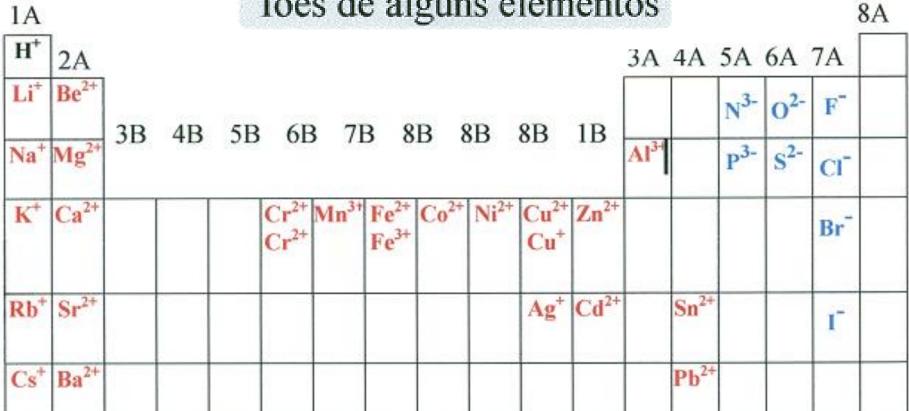
Composto iónico


Um composto que tem ligações iónicas.

Ligação iónica

Atracção electrostática entre iões de carga oposta.

Pontos de fusão e ebulição bastante elevados.


Arranjo de iões num cristal de cloreto de sódio

Ponto de fusão = 801°C

Ponto de ebulição = 1413°C

Iões de alguns elementos

- Metais formam catiões por perda de um ou mais electrões.
- Não-metais formam aniões por ganho de um ou mais electrões.
- Metais de transição podem formar mais do que um catião.

Dulcineia F. Wessel

Nome de iões

Catiões de metais

Elemento	Símbolo	Nome do catião
Alumínio	Al ³⁺	ião alumínio
Bário	Ba ²⁺	ião bário
Cádmio	Cd^{2+}	ião cádmio
Cálcio	Ca ²⁺	ião cálcio
Césio	Cs ⁺	ião césio
Estrôncio	Sr ²⁺	ião estrôncio
Hidrogénio	H^{+}	ião hidrogénio ou hidrogenião
Lítio	Li ⁺	ião lítio
Magnésio	Mg^{2+}	ião magnésio
Potássio	K^{+}	ião potássio
Prata	Ag^+	ião prata
Sódio	Na ⁺	ião sódio
Zinco	Zn^{2+}	ião zinco

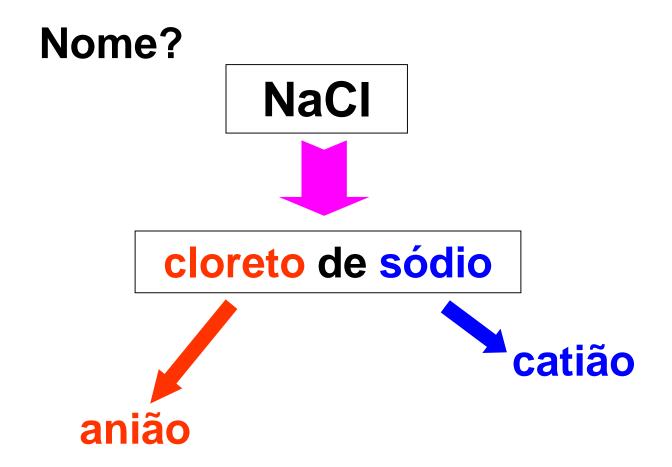
Dulcineia F.Wessel

CTeSP_VE: Química

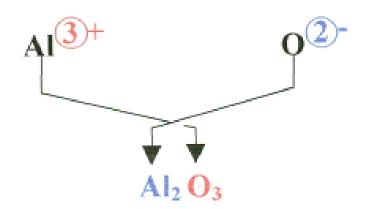
Catiões de metais de transição

Elemento	Símbolo	Nome antigo	Nome novo
Cobre	Cu ⁺	Cuproso	Cobre (I)
	Cu ²⁺	Cúprico	Cobre (II)
Crómio	Cr^{2+}	Cromoso	Crómio (II)
	Cr ³⁺	Crómico	Crómio (III)
Estanho	Sn ²⁺	Estanoso	Estanho (II)
	Sn ⁴⁺	Estânico	Estanho (IV)
Ferro	Fe^{2+}	Ferroso	Ferro (II)
	Fe ³⁺	Férrico	Ferro (III)
Mercúrio	$^{a}Hg_{2}^{2+}$	Mercuroso	Mercúrio (I)
	Hg^{2+}	Mercúrico	Mercúrio (II)

^a Este catião é composto por dois átomos de mercúrio, cada um dos quais tem carga de +1.


Aniões monoatómicos

Elemento	Símbolo	Nome do anião
Azoto	N ³⁻	ião nitreto
(Nitrogénio)		
Bromo	Br	ião brometo
Cloro	Cl ⁻	ião cloreto
Enxofre	S ²⁻	ião sulfureto
Flúor	F ⁻	ião fluoreto
Fósforo	P ³⁻	ião fosforeto
Hidrogénio	H	ião hidreto
Iodo	I	ião iodeto
Oxigénio	O ²⁻	ião óxido


Nome	Fórmula	Nome	Fórmula
Acetato	CH ₃ COO		
Amónio	NH_4^+		
Carbonato	CO ₃ ²⁻	Hidrogenocarbonato*	HCO ₃ -
Tiocianato	SCN		
Cianeto	CN-		
Clorato	ClO ₃ -	Hipoclorito	CIO-
Cromato	CrO ₄ ²⁻	Dicromato	Cr ₂ O ₇ ²⁻
Dihidrogenofosfato	$H_2PO_4^-$	Fosfato	PO ₄ 3-
Hidrogenossulfato	HSO ₄	Sulfato	SO ₄ ²⁻
		Sulfito	SO ₃ ²⁻
Hidróxido	OH-		
Nitrato	NO ₃	Nitrito	NO ₂
Permanganato	MnO_4		

Ou bicarbonato.

Nomenclatura de compostos iónicos

Óxido de alumínio | ⇒ Fórmula?

Soma das cargas =
$$2(+3) + 3(-2) = 0$$

Metais com mais do que um catião

Mn²⁺ ⇒ MnO ⇒ óxido de manganês (II)

 $Mn^{3+} \Rightarrow Mn_2O_3 \Rightarrow \text{ óxido de manganês (III)}$

 $Mn^{4+} \Rightarrow MnO_2 \Rightarrow \text{ óxido de manganês (IV)}$

Ácidos e Bases

Um ácido⁵

⇒ Uma substância que, quando em solução aquosa, liberta iões H⁺: HCl, HNO₃, H₂SO₄, H₃PO₄

Uma base⁵

□ Uma substância que, quando em solução aquosa, produz iões OH⁻: NaOH, KOH, Ba(OH)₂

⁵ Definição segundo o conceito de Arrhenius.

Nomenclatura de Ácidos

Anião	Ácido respectivo	
F- (Fluor <u>eto</u>)	HF	(ácido fluor <u>ídrico</u>)
Cl- (Cloreto)	HCl	(ácido clorídrico)
Br (Brometo)	HBr	(ácido bromrídrico)
I- (Iodeto)	НІ	(ácido iodrídrico)
CN- (Cianeto)	HCN	(ácido cianídrico)
S ² -(Sulfureto)	H_2S	(ácido sulfidrico)

Estado físico ?

HCl (g) → cloreto de hidrogénio

HCl (aq) → ácido clorídrico

Dulcineia F.Wessel CTeSP_VE: Química

Oxoácidos | Ácidos que contêm oxigénio, para além do hidrogénio.

 H_2CO_3 ácido carbónico

H₂SO₄ ácido sulfúrico

HNO₃ ácido nítrico

HClO₃ ácido clórico

O elemento central é o mesmo, só diferem no nº de átomos de oxigénio:

Ácido	Nome do Anião	
HClO ₄ ⇒ perclórico	ClO ₄ ⁻ ⇒ perclorato	
HClO ₃ ⇔ clór <u>ico</u>	ClO ₃ ⁻ ⇔ clor <u>ato</u>	referência
HClO ₂ ⇒ clor <u>oso</u>	ClO ₂ ⁻ ⇔ clor <u>ito</u>	
HClO ⇒ hipocloroso	ClO⁻ ⇒ hipoclorito	
	HClO ₄ ⇒ perclórico HClO ₃ ⇒ clór <u>ico</u> HClO ₂ ⇒ clor <u>oso</u>	$HClO_4 \Rightarrow perclórico$ $ClO_4^- \Rightarrow perclorato$ $HClO_3 \Rightarrow clórico$ $ClO_3^- \Rightarrow clorato$ $HClO_2 \Rightarrow cloroso$ $ClO_2^- \Rightarrow clorito$

Dulcineia F.Wessel

CTeSP VE: Química

Aniões com hidrogénios ácidos: ácido fosfórico

$$\frac{\text{PO}_4^{2^-}}{\text{PO}_4^{2^-}} \xrightarrow{\text{Dissolvido em H}_2\text{O}} \text{H}^+ + \frac{\text{PO}_4^{3^-}}{\text{fosfato}}$$

Nomenclatura de Bases

Dulcineia F.Wessel CTeSP_VE: Química 26

Hidratos

Compostos que têm associados moléculas de água

Fórmula	H ₂ O	Nome
LiCl . H ₂ O	1	cloreto de lítio monohidratado
$BaCl_2$. ${}^{2}H_2O$	2	cloreto de bário dihidratado
$Sr(NO_3)_2 \cdot 4H_2O$	4	nitrato de estrôncio tetrahidratado
CuSO ₄ .5H ₂ O	5	sulfato de cobre (II) pentahidratado
$MgSO_4.7H_2O$	7	sulfato de magnésio heptahidratado

Fórmula	Nome químico	Nome vulgar	
Ca(OH) ₂	Hidróxido de cálcio	Cal apagada	
Ca(SO ₄) ₂ . 2H ₂ O	Sulfato de cálcio dihidratado	Gesso	
CaCO ₃	Carbonato de cálcio	Calcário, mármore, giz	
CaO	Óxido de cálcio	Cal viva	
CO ₂	Dióxido de carbono (sólido)	Gelo seco	
Fe ₂ O ₃	Óxido de ferro (III)	Ferrugem	
H_2O_2	Peróxido de hidrogénio	Água oxigenada	
Hg ₂ Cl ₂	Cloreto de mercúrio (1) (cloreto mercuroso)	Calomelanos	
HNO ₃	Ácido nitrico	Água-forte	
кон	Hidróxido de potássio	Potassa câustica	
MgO	Óxido de magnésio	Magnésia	
Na ₂ CO ₃ , 10H ₂ O	Carbonato de sódio	Soda comercial, soda de lavar	
NaCl	Cloreto de sódio	Sal das cozinhas	
NaHCO ₃	Hidrogenocarbonato de sódio	Soda-fermento, fermento para bolos	
NaOCI	Hipoclorito de sódio (solução aquosa)	Lixívia	
NaOH	Hidróxido de sódio	Soda cáustica	

Como dar nomes a compostos inorgânicos iónicos ?

Etapa 1: Identificar o anião e o catião

Para encontrar o nº de oxidação do catião, determine a carga necessária para cancelar a carga dos aniões

Etapa 2: Escrever o nome do catião

Etapa 3: Se o anião é monoatómico, mudar a terminação do nome para *-eto*

- a) Oxoanião: Nº maior de átomos de oxigénio -> sufixo: -ato; prefixo per-
- b) Oxoanião: Nº menor de átomos de oxigénio → sufixo: -ito; prefixo hipo-

Etapa 4: Moléculas de água na fórmula -> hidratado + prefixo grego que corresponda ao nº de moléculas de água

Diga qual o nome dos seguintes compostos inorgânicos iónicos?

a) CrCl₃.6H₂O

1. Identifique o catião e o anião: Cr3+, Cl7

2. Dê o nome ao catião, incluindo a carga do metal:

crómio (III)

(existem 3 iões CI⁻, logo a carga do cromo deve ser +3)

3. Dê o nome ao anião: cloreto

4. Combine o nome dos iões: cloreto de crómio (III)

5. Se a água está presente, adicione a palavra hidratado e o prefixo grego adequado:

cloreto de crómio (III) hexa-hidratado

b) Ba(CIO₄)

1. Identifique o catião e o anião: Ba²⁺, CIO₄

2. Dê o nome ao catião, incluindo a carga do metal:

3. Dê o nome ao anião: perclorato

4. Combine o nome dos iões:

perclorato de bário

Como dar nomes a compostos inorgânicos moleculares?

Compostos binários moleculares diferentes de ácidos

Etapa 1: Nome do 2º elemento com terminação –eto, + "de" + nome 1º elemento

Etapa 2: Prefixos gregos para indicar o nº de átomos de cada elemento

Ácidos

Etapa 1: Ácido binário em solução → adicionar "ácido…ídrico" à raiz do nome do elemento

Etapa 2: Oxoácido → derivar o nome do ião poliatómico

Diga qual o nome dos seguintes compostos inorgânicos moleculares?

a) BCI₃

triclor<u>eto</u> de boro

b) IF₅

pentafluoreto de iodo

c) SiC

carboneto de silício

d) HI

iodeto de hidrogénio (ácido iodídrico)

e) HCI

cloreto de hidrogénio (ácido clorídrico)

Diga qual o nome dos seguintes compostos inorgânicos moleculares?

f) CO₂

dióxido de carbono

g) SO₂

dióxido de enxofre

h) SO₃

trióxido de enxofre

i) NO₂

dióxido de azoto (dióxido de nitrogénio)

j) N₂O₄

tetróxido de dinitrogénio

O "a" terminal do prefixo cai, por contracção

k) CIO₂

dióxido de cloro

Diga qual o nome dos seguintes compostos inorgânicos moleculares?

I) HCN

ácido cianídrico

m) HNO₂

ácido nitroso

Oxoácido, que gera o ião nitrito

n) H₃PO₃

ácido fosforoso

Escrever as fórmulas químicas dos seguintes compostos?

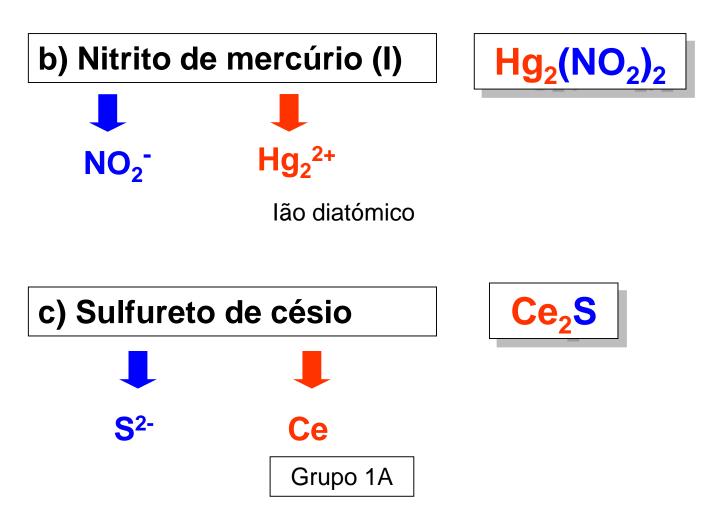
a) Cloreto de cobalto (II) hexa-hidratado

Composto molecular ? Não

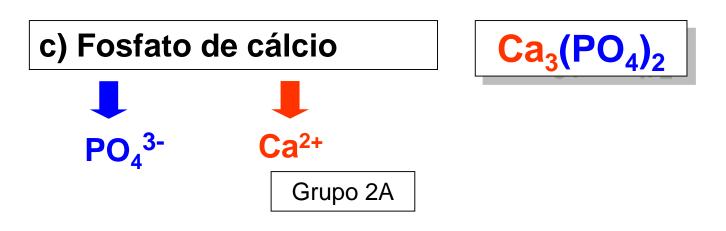
Composto iónico? SIM

Dois não metais

Combinação de metal e não-metal


cobalto (II) carga +2

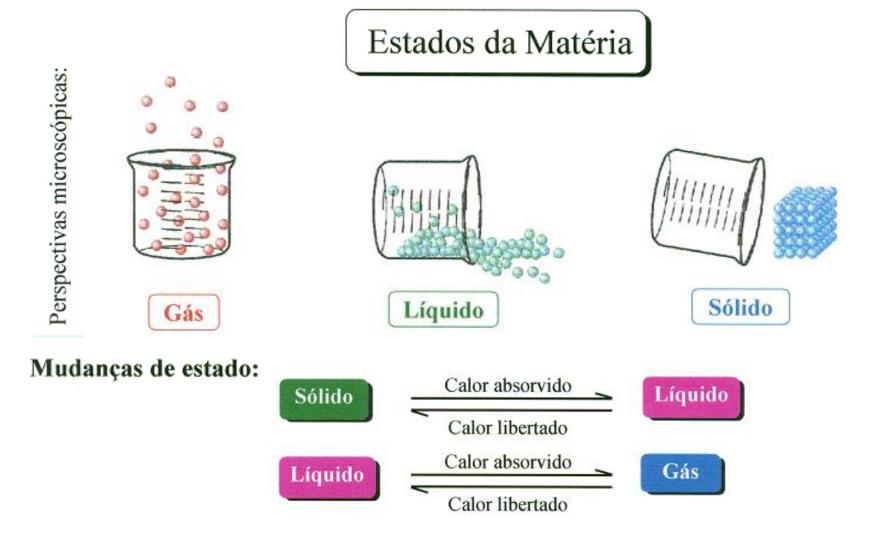
cloreto carga -1


Cloro está no Grupo 7A da Tabela Periódica → 7 e- de valência

CoCl₂.6H₂O

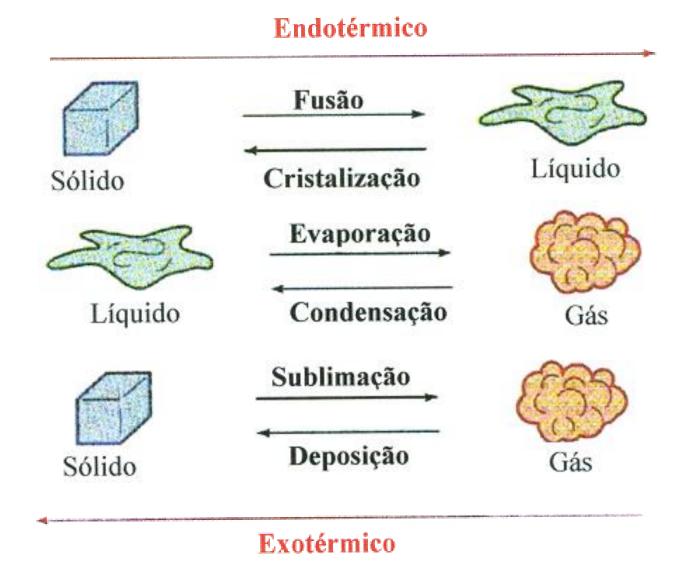
Escrever as fórmulas químicas dos seguintes compostos?

Escrever as fórmulas químicas dos seguintes compostos?



K₂Cr₂O₇

K


Grupo 1A

Ponto de fusão: Temperatura à qual a fase sólida e líquida coexistem em equilíbrio

Ponto de ebulição: Temperatura à qual a fase líquida e gasosa coexistem em equilíbrio

Mudanças de estado e sua natureza endotérmica e exotérmica:

Dulcineia F.Wessel

CTeSP_VE: Química