
Reações Redox

Revisão de alguns conceitos de oxidação-redução

Uma espécie oxida-se quando cede eletrões. Uma espécie reduz-se quando ganha eletrões.

A redução ocorre quando o estado de oxidação de um átomo ou ião diminui.

A oxidação ocorre quando o estado de oxidação de um átomo ou ião aumenta.

Oxidação e redução têm de estar associadas porque os eletrões não são criados nem destruídos

Regras para a determinação do número de oxidação

 O número de oxidação de um átomo no estado elementar é zero.

Exemplo: $C\ell$ em $C\ell_2$ e $A\ell$ têm ambos número de oxidação 0 (zero).

 O número de oxidação de um ião monoatómico é igual à sua própria carga.

Exemplo: No composto NaCℓ, Na tem um número de oxidação + 1 e Cℓ tem – 1.

3. Nos compostos, os metais do grupo 1 têm número de oxidação + 1 e os do grupo 2 têm + 2; o Al tem + 3.

Exemplo: O sódio, o potássio... têm n.º de oxidação + 1; o magnésio, o cálcio... têm + 2.

3

Regras para a determinação do número de oxidação (cont.)

 Os halogéneos (elementos do grupo 7), quando formam iões negativos têm número de oxidação – 1.

Exemplo: Cℓ em NaCℓ tem número de oxidação – 1.

5. O número de oxidação do hidrogénio num composto é + 1, exceto nos hidretos (compostos que o hidrogénio forma com os metais dos elementos representativos), que é – 1.

Exemplo: É + 1 em H_2O mas é - 1 em NaH (hidreto de sódio).

6. O número de oxidação do oxigénio num composto é – 2, exceto nos peróxidos, que é – 1, e em OF₂, que é + 2.

Exemplo: Em H_2O o oxigénio tem número de oxidação – 2 e em H_2O_2 tem – 1.

4

Regras para a determinação do número de oxidação (cont.)

 A soma algébrica dos números de oxidação de todos os átomos na fórmula de um composto é zero.

Exemplo: A soma dos números de oxidação de Na e de Cl em NaCl é 0.

8. A soma algébrica dos números de oxidação de todos os átomos na fórmula de um ião poliatómico é igual à carga do ião.

Exemplo: No ião sulfato, SO_4^{2-} , a soma dos números de oxidação do enxofre e dos quatro átomos de oxigénio é igual a -2. Como o número de oxidação do oxigénio é -2, o do enxofre será +6.

Semiequações de oxidação e de redução

$$Zn(s) + Cu^{2+}(aq) \longrightarrow Zn^{2+}(aq) + Cu(s)$$

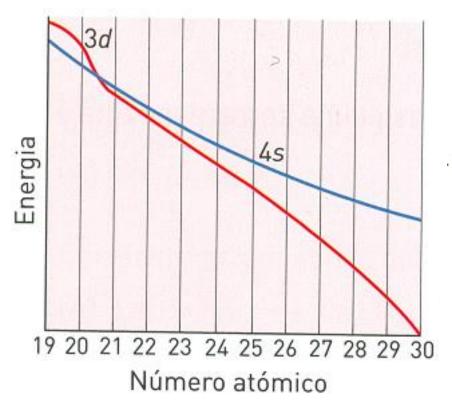
$$0 + 2 + 2 0$$

$$redução \longrightarrow$$

- um redutor cede eletrões, forma-se um oxidante, que pode captar eletrões na reação inversa;
- um oxidante capta eletrões, forma-se um redutor, que pode ceder eletrões na reação inversa.

Corrosão: uma oxidação indesejável

Metais de transição e variedade de nº de oxidação


Os metais de transição, como já se referiu, distinguem-se dos outros metais pela configuração eletrónica: os metais de transição têm os seus eletrões de valência em mais do que uma camada.

	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn
Número total de eletrões 3d e 4s	3	4	5	6	7	8	9	10	11	12
	+3	+2 +3	+2 +3	+2 +3	+2 +3	+2 +3	+2+3	+2 +3	+1 +2 +3	Compostos iónicos
		+4	+4+5	+4 +5 +6	+4 +5 +6 +7	+4 - +6	+4 +5	+4		Compostos covalentes

A vermelho os estados de oxidação mais vulgares

No entanto, não é necessária grande quantidade de energia para converter um estado de oxidação num outro estado, porque as orbitais 3d e 4s têm energias muito próximas

Assim, os metais de transição são facilmente oxidados e reduzidos.

Energia das orbitais 3*d* e 4*s*.

Exercício 6. Escolha a opção que melhor completar a seguinte frase:

"Comparando as propriedades dos metais alcalinos com os metais de transição do mesmo período, os metais alcalinos, geralmente,...

- (A) ...são mais densos e com maior raio atómico."
- (B) ...apresentam temperatura de fusão mais baixa e raio atómico maior."
- (C) ...são mais facilmente reduzidos."
- (D) ...apresentam energias de ionização mais baixas e afinidades eletrónicas mais elevadas."

- "Comparando as propriedades dos metais alcalinos com os metais de transição do mesmo período, os metais alcalinos, geralmente,...
- (A) ...são mais densos e com maior raio atómico."
- (B) ...apresentam temperatura de fusão mais baixa e raio atómico maior."
- (C) ...são mais facilmente reduzidos."
- (D) ...apresentam energias de ionização mais baixas e afinidades eletrónicas mais elevadas."
 - (A) São menos densos
 - (C) As energias de ionização são mais baixas
 - (D) As afinidades eletrónicas são mais baixas

Indique o número de oxidação de cada elemento nas seguintes partículas:

(A) KMnO₄

(B) NaNO₂

(C) HPO₄²

(D) H₂O₂

↓

↓

1

K = +1

Na = +1

H = +1

H = +1

0 = -2

0 = -2

0 = -2

0 = -1

Mn = +7

N = +3

P = +5

Considere a seguinte equação química:

$$MnO_2 + 2 Fe^{2+} + 4 H^+ \longrightarrow Mn^{2+} + 2 Fe^{3+} + 2 H_2O$$

O número de oxidação do redutor variou de:

$$(C) + 3 para + 2$$

$$(D) + 2 para + 3$$

Agente redutor = cede eletrões

Considere as equações químicas.

(A)
$$CaO + H_2O \longrightarrow Ca(HO)_2$$

(B) $4C\ell_2 + 4H_2O \longrightarrow 7HC\ell + HC\ell O_4$
(C) $4HC\ell + MnO_2 \longrightarrow MnC\ell_2 + C\ell_2 + 2H_2O$
(D) $FeO + C \longrightarrow Fe + CO$

Indique as equações que representam reações de oxidação-redução.

Indique as espécies oxidante e redutora nas reações de oxidação-redução.

__Oxidante __Redutor

13

Considere a equação química: Fe(s) + Cu²⁺(aq) → Fe²⁺(aq) + Cu(s)

Qual das semiequações representa a oxidação?

Considere a equação de oxidação-redução:

$$Zn(s) + 2 HC\ell(aq) \longrightarrow ZnC\ell_2(aq) + H_2(g)$$

Indique a variação do número de oxidação das partículas redutora e oxidante.

$$Zn = 0 a + 2$$

$$H = +1 a 0$$

A equação representa a reação que pode ocorrer num airbag.

$$6 \text{ Na(s)} + \text{Fe}_2\text{O}_3(\text{s}) \longrightarrow 3 \text{ Na}_2\text{O}(\text{s}) + 2 \text{ Fe}(\text{s})$$

Selecione das opções A, B, C e D a que corresponde à partícula redutora nesta reação.

(C) Fe(s)

Na (s)
$$\rightarrow$$
 Na⁺ (aq) + 1e⁻

Agente redutor = cede eletrões

Indique a afirmação que traduz corretamente uma reação de oxidação-redução.

- (A) A semirreação de oxidação ocorre depois da semirreação de redução.
- (B) A oxidação ocorre antes da redução.
- (C) As duas semirreações de oxidação e de redução ocorrem em simultâneo.

Numa reação de oxidação-redução verifica-se sempre conservação...

(A) ... apenas de massa.

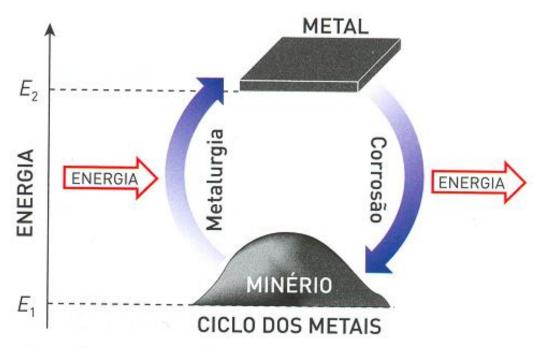
(B) ... apenas de carga elétrica.

(C) ... de massa e de carga em simultâneo.

(D) ... do número de moléculas.

A corrosão como uma reação de oxidação-redução

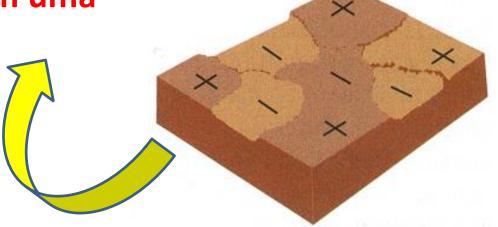
- Os objetos de cobre e de bronze tornam-se esverdeados com o passar do tempo.
- Um carro enferruja mais rapidamente se for deixado sempre ao relento.
- O casco de ferro dos navios desfaz-se se não for raspado e protegido.


Os metais, à exceção de poucos como, por exemplo, o ouro e a platina, são sempre encontrados na Natureza na forma de óxidos, sulfuretos, hidróxidos..., o que significa que estes compostos são as suas formas mais estáveis; para obter o metal, terá de se efetuar a respetiva extração e, para que isto aconteça, é necessária a aplicação de uma considerável quantidade de energia.

Hematite (Fe_2O_3).

Pirite (FeS₂).

Corrosão refere-se, especificamente, a processos químicos ou eletroquímicos que envolvam a deterioração e degradação dos componentes metálicos.



A maior parte dos metais corroem-se em contacto com o ar húmido, com ácidos, bases, sais, iões cloreto... e outras substâncias sólidas e líquidas. A corrosão também acontece quando expostos a materiais gasosos como vapores ácidos, formaldeído gasoso, gás amoníaco e gases sulfurosos.

Estes pontos formam uma

célula de corrosão

Os ânodos e os cátodos podem aparecer devido a diversos fatores, como defeitos nos metais, alterações nos revestimentos e variações nos eletrólitos.

Superfície de um metal e localização de ânodos e cátodos.

Uns pontos tornam-se ânodos (ou polos negativos)

Outros tornam-se cátodos (ou polos positivos)

Reação anódica

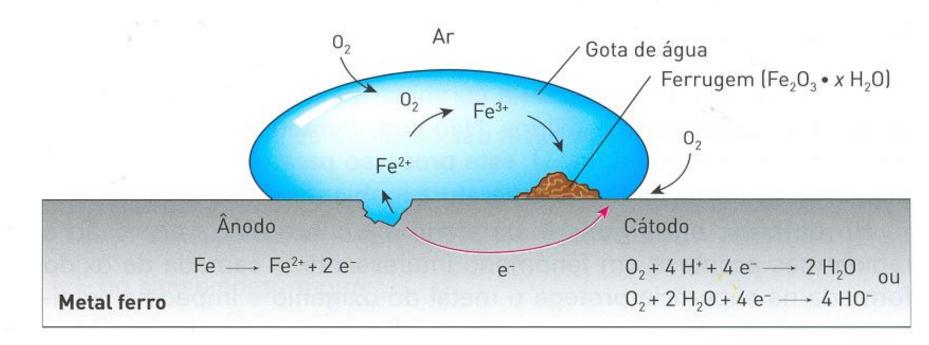
Identifica-se pela dissolução do metal que dá origem tanto a produtos iónicos solúveis como a compostos do metal insolúveis, geralmente óxidos.

Fe(s)
$$\longrightarrow$$
 Fe²⁺(aq) + 2 e⁻

Reações catódicas

São possíveis em função das espécies presentes na solução; reações catódicas típicas são a redução do oxigénio dissolvido ou a redução do solvente (água) para produzir hidrogénio gasoso.

$$O_2(g) + 2 H_2O(\ell) + 4 e^- \rightarrow 4 HO^-(aq)$$


Exemplifica o que acontece no <u>cátodo</u> em ambientes naturais com valores de pH próximos da <u>neutralidade</u>.

$$O_2(g) + 2 H_2O(\ell) + 4 e^- \rightarrow 4 HO^-(aq)$$

Exemplifica o que acontece no cátodo em <u>meios</u> <u>ácidos</u>, normalmente ambientes industriais ou em volumes confinados.

$$O_2(g) + 4 H^+(aq) + 4 e^- \rightarrow 2 H_2O(\ell)$$

 $2 H^+(aq) + 2 e^- \rightarrow H_2(g)$ (4)

Mecanismos da corrosão do ferro.

em meio ácido

$$Fe(s) + 2 H^{+}(aq) \rightarrow Fe^{2+}(aq) + H_{2}(g)$$

· em meio próximo da neutralidade

$$2 \operatorname{Fe}(s) + O_2(g) + 2 \operatorname{H}_2O(\ell) \longrightarrow 2 \operatorname{Fe}(HO)_2(s)$$

$$2 \operatorname{Fe(s)} + \operatorname{O_2(g)} + 2 \operatorname{H_2O(\ell)} \longrightarrow 2 \operatorname{Fe(HO)_2(s)}$$

O ião Fe^{2+} de $Fe(HO)_2$ é rapidamente oxidado pelo dioxigénio, em presença da água, originando o ião Fe^{3+} , sob a forma predominante de $Fe_2O_3 \cdot x H_2O$ (ferrugem).

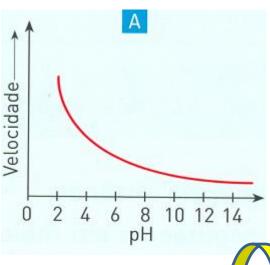
$$4 \text{ Fe}^{2+}(aq) + 3 O_2(g) + 6 H_2O_3 \rightarrow 2 \text{ Fe}_2O_3 \cdot 6 H_2O(s)$$

A quantidade de água associada ao óxido hidratado de ferro(III) pode variar.

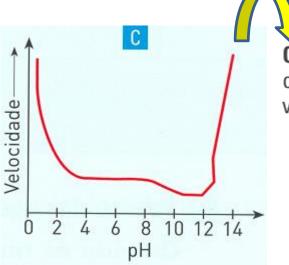
Como este precipitado não adere totalmente ao metal (ao contrário de óxidos de outros metais, como o óxido de alumínio), vai permitir que a corrosão do metal possa continuar a existir.

Mas, se a acidez for elevada (baixo valor de pH), verifica-se o aparecimento de hidrogénio gasoso (2 H⁺(aq) + 2 e⁻ \longrightarrow H₂(g)).

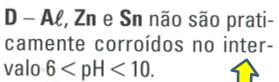
À medida que o di-hidrogénio se forma, vai-se localizando na superfície do metal, formando um filme gasoso muito fino que pode vir a inibir uma futura corrosão – efeito polarizador , ou seja, inibidor.

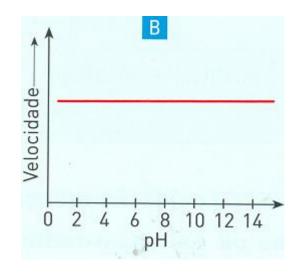


Efeito polarizador.

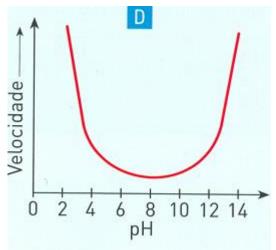

$$O_2(g) + 4 H^+(aq) + 4 e^- \longrightarrow 2 H_2O(\ell)$$

No entanto, este filme polarizador pode ser destruído se houver quantidade suficiente de oxigénio dissolvido na água (arejamento) que favoreça a reação esquematizada por:


Influência do pH do meio na velocidade de corrosão



A – Os metais Ni, Cu, Mn, Mg, Co, Cr e Cd apresentam uma variação relativamente regular: quanto mais ácido for o meio (menor pH), maior a velocidade da corrosão.



 $\mathbf{C} - \mathbf{Fe}$ e o **aço** não são praticamente corroídos no intervalo $4 < \mathrm{pH} < 12$.

B – Au, Pt e Pd não apresentam alteração da velocidade em função do pH.

Conclusão:

- não existe uma relação igual para todos os metais;
- nos casos do ferro, do aço, do alumínio, do zinco e do estanho, a velocidade de corrosão aumenta tanto para valores de pH muito baixos como para os muito elevados;
- as equações químicas que traduzem estas reações poderão ter de incluir as partículas H⁺(aq) e HO⁻(aq) na sua escrita;
- os produtos da reação poderão variar com o pH do meio.